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SUMMARY

Multiresolution analysis based on the reproducing kernel particle method (RKPM) is developed for
computational ¯uid dynamics. An algorithm incorporating multiple-scale adaptive re®nement is introduced.
The concept of using a wavelet solution as an error indicator is also presented. A few representative numerical
examples are solved to illustrate the performance of this new meshless method. Results show that the RKPM is a
good candidate for tackling the widespread large-scale problems in ¯uid dynamics. # 1997 by John Wiley &
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1. INTRODUCTION

The subject of computational ¯uid dynamics has been dominated by ®nite difference, ®nite volume

and ®nite element methods for many years. Only recently has a new family of meshless particle

methods emerged as an alternative to solve ¯uid dynamics problems numerically. A common

characteristic of all the proposed particle methods is that they aim at enhancing the accuracy for high-

gradient problems, circumventing the de®ciencies of the ®nite element method such as mesh

distortion for large-deformation problems, among others.

Smoothed particle hydrodynamics (SPH) is one of the particle methods that has been popularly

used for astrodynamic simulation.1±4 Some researchers5±7 have applied SPH to problems of solid

mechanics involving impact and penetration simulations. However, it is well known that the success

of SPH is limited to problems in which boundaries do not play an important role.3 By introducing a

new kernel function with a boundary correction term, Liu et al.8±10 have developed the reproducing

kernel particle method (RKPM), which can handle boundaries without losing the consistency

condition and can improve the accuracy of the solution as well. The application of the RKPM ranges

from large deformation and structural acoustics to micromechanics and compressible ¯ows.8±13 The

®rst comprehensive theoretical introduction to the RKPM and the relationship between the RKPM

and wavelet transformation has been presented by Liu et al.,10 which leads to the study of

multiresolution analysis by wavelet-reproducing kernel methods. Liu et al.8,9 extended the

application of the RKPM to 1D elastic±perfectly plastic deformation and 2D dynamics. Convergence

studies of moving least square kernel Galerkin methods and the multiple-scale RKPM are given in
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Reference 14 and References 8 and 15 respectively. Other related meshless methods include the

element-free Galerkin (EFG) method proposed by Belytschko et al.,16 hp-clouds by Duarte and

Oden,17 partition of unity ®nite element method by Babuska and Melenk18, ®nite points method by

OnÄate et al.19 and the free mesh method by Yagawa et al.20

Having all the features of meshless methods, the RKPM opens a new chapter of multiresolution

analysis for particle methods based on wavelet theory. Liu and Oberste-Brandenburg21 ®rst proposed

the concept of the multiple-scale RKPM in conjunction with wavelet analysis. Then Liu and Chen22

extensively studied the multiresolution analysis by wavelet and reproducing kernel methods,

including edge detection and aliasing control. Later, multiresolution analysis by the RKPM and hp-

adaptivity by multiple-scale analysis were applied to structural acoustic problems by Liu et al.8 A

review of meshless kernel particle methods and wavelet analysis is presented by Liu et al.15

This paper is concerned with applications of the reproducing kernel particle method to

computational ¯uid dynamics. It is our intention to employ multiresolution analysis based on

discrete and continuous reproducing kernels, wavelets and integral window transforms to address

some of the fundamental issues related to the dynamic analysis of compressible ¯ows.

The composition of this paper is as follows. The general formulation of the RKPM is developed in

Section 2. Section 3 is devoted to the streamline upwind Petrov±Galerkin formulation of the RKPM.

Multiresolution analysis and multiple-scale adaptivity are given in Section 4. Several numerical

examples and conclusions are presented in Sections 5 and 6 respectively.

2. FORMULATION OF REPRODUCING KERNEL PARTICLE METHOD (RKPM)

2.1. Kernel approximation

The kernel approximation of any function u�x� is de®ned as

uR�x� �
�1
ÿ1

u�~x�K�xÿ ~x�d~x; �1�

where K�xÿ ~x� is the kernel function. Equation (1) is also regarded as an integral transformation;

alternatively, as the starting point for multiple-scale analysis, it is interpreted as a convolution. If the

kernel function is the Dirac delta function d�xÿ ~x�, the kernel approximation results in the trivial

identity. To mimic the delta function, a Gaussian distribution function has usually been selected for

the kernel function. A spline-type function is also a popular choice for the kernel function since it has

a compact support.

We here consider the ®nite domain O rather than the in®nite domain �ÿ1;1�, which means that

the kernel function is not de®ned outside the domain O. Within this ®nite region the kernel

approximation can be written as

uR�x� �
�
O

u�xÿ ~x�K�xÿ ~x; a�d~x; �2�

where a is the dilation parameter that gives the kernel function possessing the property

K�xÿ ~x; a� ! d�x� as a! 0: �3�
The major contribution of K�xÿ ~x� to the kernel approximation is usually con®ned to the

neighbourhood of ~x by adjusting the dilation parameter a, which is referred to as the smoothing

length.2 The kernel function also has the normalization property with respect to integration over the

domain O i.e. �
O

K�x; a�dx � 1: �4�
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However, this normalization property is not always satis®ed, because the window function is cut

off at the boundary of the ®nite domain problem. The integration of (4) is less than one if x is near the

boundary of the domain O.

2.2. Moments, correction function and window function

In SPH the kernel approximation de®ned by (2) has a major de®ciency because of the presence of

the ®nite domain boundary as pointed out before. To remedy this de®ciency, we introduce a new

kernel function and a window function in the form

K�x; ~x� � C�x; ~x�f�xÿ ~x� � �C0�x� � C1�x� ? �xÿ ~x��f�xÿ ~x�; �5�
where the correction function C�x; ~x� is assumed to be linear with respect to x and the window

function f�xÿ ~x� is the same as the SPH kernel function introduced in the previous subsection. The

properties of the window function are explained by Liu et al.9 in detail. We will here de®ne the

correction function for the RKPM kernel function of (5) to satisfy the consistency conditions u�x� � 1

and u�x� � xi �i � 1; � � � ;NP� everywhere in the domain regardless of the presence of the boundary,

where NP is the number of particles. It has already been shown that this correction function enhances

the accuracy of the discretized kernel representation not only near the boundary but also inside the

entire domain.9,10

First, to satisfy the consistency condition u�x� � 1, the new kernel function must have property

1 �
�
O

1 K�x; ~x�d~x; �6�

which is identical with the normalization condition given by (4). The second consistency condition

we impose on the RKPM kernel approximation is that u�x� � xi, which can be written as

x �
�
O

~xK�x; ~x�d~x � x

�
O

K�x; ~x�d~xÿ
�
O
�xÿ ~x�K�x; ~x�d~x: �7�

In order to satisfy the identity relationship, we must have the condition that the integration of the

second term on the right-hand side becomes a zero vector, as well as the condition (6). The zero-

vector condition is rewritten as �
O
�xÿ ~x�K�x; ~x�d~x � 0 �8�

Before we derive the correction function, it is convenient to ®rst de®ne the zeroth, ®rst and second

moments in terms of which the correction function is expressed. The zeroth moment is a scalar

de®ned by the integration of the window function over the domain as

m0�x� �
�
O

f�xÿ ~x�d~x: �9�

The ®rst-moment vector, whose dimension is NSD, is given by

m1�x� �
�
O
�xÿ ~x�f�xÿ ~x�d~x: �10�

The second moment is a tensor quantity of dimensions NSD6NSD:

m2�x� �
�
O
�xÿ ~x��xÿ ~x�f�xÿ ~x�d~x: �11�
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To de®ne the functions C0 and C1, we insert our new kernel function (5) into (6) and (8). We then

have

1 �
�
O
�C0�x� � C1�x� ? �xÿ ~x��f�xÿ ~x�d~x

� C0�x�
�
O
f�xÿ ~x�d~x� C1�x� ?

�
O
�xÿ ~x�f�xÿ ~x�d~x

� C0�x�m0�x� � C1�x� ? m1�x� �12�

and from (8) we also have

0 �
�
O
�xÿ ~x��C0�x� � C1�x� ? �xÿ ~x��f�xÿ ~x�d~x

� C0�x�
�
O
�xÿ ~x�f�xÿ ~x�d~x� C1�x� ?

�
O
�xÿ ~x��xÿ ~x�f�xÿ ~x�d~x

� C0�x�m1�x� � C1�x� ? m2�x�: �13�

With these two conditions (12) and (13) we can construct a set of linear algebraic equations for C0

and C1 as

m0�1� 1� mT
1 �1� NSD�

m1�NSD� 1� m2�NSD� NSD�
� �

C0�1� 1�
C1�NSD� 1�

� �
� 1�1� 1�

0�NSD� 1�
� �

; �14�

where the partial the partial dimensions are given in parentheses and superscript T denotes the

transpose. If we de®ne the total moment matrix as a (1�NSD)6 (1�NSD) non-singular matrix

M�x� � m0 mT
1

m1 m2

� �
; �15�

then we can ®nally get the expression for the correction function of the RKPM as

RKPM correction function � C0�x� � C1�x� ? �xÿ ~x�; �16�

where

C0�x�
C1�x�

� �
�Mÿ1�x� 1

0

� �
: �17�

By using symbolic calculation, we can easily get the closed form for the correction function in

terms of the moments de®ned by (9)±(11). Since we need to calculate the inverse of the matrix M�x�,
it is clear that we have to have a non-zero value for the determinant of M�x�. This constraint requires

that the dilation parameters (or smoothing length) be larger than its critical value. For example, a 1D

window function must cover at least three different particles. This is called the kernel stability

condition.9 The correction function and moments are continuous functions of the variable x. In

References 9 and 10 it was shown that C0 � 1 and C1 � 0 when the support of the window function

f�xÿ ~x� is away from the boundary, whereas they are higher-order functions if the support is close to

the boundary. It is noted that the de®nition of the correction function yields the same results as those

Liu et al.9,10 derived from moving least squares interpolants and linear polynomials.
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2.3. Reproducing kernel particle interpolation function and its derivatives

By introducing the discretized kernel particle form, the kernel approximation is written by

summation over the NP distinct particles as

uh�x� � PNP

J�1

NJ �x�uJ �18�

and the reproducing kernel interpolation function is given by

NJ �x� � C�x; xJ �f�xÿ xJ �DVJ ; �19�

where xJ is the position vector and DVJ the lumped volume element of the Jth particle. Liu et al.10

showed that the discretized correction function C�x; xJ � apparently enhances the accuracy and

stability of kernel interpolation around the boundary. The derivatives of the reproducing kernel

interpolation function can be easily obtained by taking the derivatives of the correction function and

window function. For example,

NJ ;x�x� � C;x�x; xJ ; a�f xÿ xJ

a

� �
� C�x; xJ ; a�f;x

xÿ xJ

a

� �h i
DVJ : �20�

The 3D computations of the derivatives of the correction function and window function are given

in detail by Liu et al.9,15

3. FUNDAMENTAL EQUATIONS FOR COMPUTATIONAL FLUID DYNAMICS

3.1. Strong form of Navier±Stokes equations

For numerical analysis it is useful to start with the Navier±Stokes (N±S) equations in conservation

form. The equations for the conservation of mass, momentum and energy are

r;t � �ruj�; j � 0 �mass�; �21a�
�rui�;t � �ruiuj�; j � p;i � tij; j � rbi �momentum�; �21b�

�re�;t � �ruie�;i � �pui�;i � �tijuj�;i ÿ qi;i � rbjuj � rr �energy�; �21c�

where r is the density, u � �u1; u2; u3�T is the velocity vector, p is the thermodynamic pressure,

t � �tij� is the stress tensor, b � �b1; b2; b3�T is the body force vector, e is the total energy density,

q � �q1; q2; q3�T is the heat ¯ux vector and r is the heat source.

So far, equations (21) still depend on the co-ordinates and the solution variables. To write the

equations only in terms of the unknowns in which we are interested, we start by de®ning the

conservation variables U � �U1;U2;U3;U4�T for 2D problems.

The following derivation of equations and matrices follows Shakib et al.23 and is only applicable to

2D problems. Note that the problem to be solved does not contain any body forces or heat sources and

these terms are therefore omitted.

U �
U1

U2

U3

U4

8>><>>:
9>>=>>; � r

1

u1

u2

e

8>><>>:
9>>=>>;: �22�
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It is also useful to de®ne the Euler and diffusive ¯ux vectors

Fi � rui

1

u1

u2

e

8>><>>:
9>>=>>;� p

0

d1i

d2i

ui

8>><>>:
9>>=>>;; �23�

Fd
i �

0

t1i

t2i

tijuj

8>><>>:
9>>=>>;�

0

0

0

ÿqi

8>><>>:
9>>=>>;: �24�

With the de®nitions (22)±(24), equations (21) can be rewritten as

U;t � Fi;i � Fd
i;i: �25�

To describe the material, the following constitutive equations are used:

i � cvy; �26�
p � �gÿ 1�ri; �27�
tij � luk;kdij � m�ui;j � uj;i�; �28�
qi � ÿky;i; �29�

where i is the internal energy density, cv is the heat capacity at constant volume, y is the absolute

temperature, g is the ratio of speci®c heats (de®ned as g � cp=cv, where cp is the heat capacity at

constant pressure), l and m are the viscosity coef®cients (for isotropic materials, l � 2
3
m� and k is the

coef®cient of thermal conductivity. Equations (26) and (27) together represent the perfect gas law,

equation (28) de®nes the viscous stress components and equation (29) is Fourier's law of heat

conduction.

To get equation (25) in a form dependent only on the conservation variables, the chain rule is used

on the Euler ¯ux term, i.e.

Fi;i � Fi;UU;i;

and the Euler Jacobian matrices Ai are de®ned as

Ai � Fi;U: �30�
The diffusive ¯ux is assumed to be proportional to the ®rst derivatives of the conservation

variables and is therefore de®ned as

Fd
i
� KijU;j; �31�

where K � �Kij� is the diffusivity matrix.

With the de®nitions (30) and (31), equation (25) can be written in quasi-linear form as

U;t � AiU;i � �KijU;j�;i: �32�

3.2. Development of the variational form

The governing equations cannot be solved in the strong form, so it is necessary to establish a

variational form to get a matrix equation that can be solved with the numerical scheme considered

here. This approach uses the widely used Bubnov±Galerkin approximation24 and a stabilizing term of

the streamline upwind type. The result is known as the streamline upwind Petrov±Galerkin (SUPG)

formulation.
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3.2.1. Euler equations

Galerkin formulation

For the Euler equations the diffusive ¯ux is not considered and the strong form is

U;t � Fi;i � 0 on O��0; T �; �33�
U � g on Gg��0; T �; �34�

ÿFn � h on Gh��0; T �; �35�
where �0; T � is the time interval of interest, O is an open set with a piecewise smooth boundary G and

Gg [ Gh � G is the boundary; �36�
Gg \ Gh � ; is an empty set; �37�
O [ G � �O is the total domain; �38�

The boundary conditions for inviscid ¯ow problems are not as crucial as for viscous ¯ow and the

weak formulation used here is stable enough for simple explicit time integration schemes. For this

formulation the ¯ux term Fi;i is ®rst written as AiU;i:

U;t � AiU;i � 0 in O: �39�
To get a variational form, we need two sets of functions, one for the trial functions U and one for

the weighting functions w. Both U and w are H1 functions, i.e. U;w 2 H1.

Next, equation (39) is premultiplied by the weighting function and integrated over the

computational domain, yielding the variational form of the Euler equations:�
O

wT�U;t � AiU;i�dO � 0: �40�

Streamline upwind operator

The SUPG formulation used here was ®rst introduced in Reference 25 and later described in more

detail in Reference 26. The purpose of the streamline upwind term is to dissipate numerical noise in

the main ¯ow direction. Therefore a perturbation of the weighting or trial function is applied to the

strong form. One of the choices used by Hughes and Tezduyar26 is

p � Tkw;k; with Tk � tk�Ak �T;
where p is the perturbation of the weighting function and tk is a parameter selected to improve

accuracy according to some criterion.

The multiplication of equation (39) by p and integration over the domain yields�
O
�Tkw;k�T�U;t � AiU;i�dO � 0: �41�

SUPG form of the Euler equations

The terms of (40) and (41) together represent the streamline upwind Petrov±Galerkin formulation of

the Euler equations:�
O

wTU;tdO�
�
O

wTAiU;idO�
�
O

wT
;kTT

k U;tdO�
�
O

wT
;kTT

k AiU;idO � 0: �42�
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3.2.2. Navier±Stokes equations

Bubnov±Galerkin formulation

For the strong form of the problem considered, equation (32) is rewritten as

U;t � Fi;i ÿ Fd
i;i � 0 in O: �43�

Next, equation (43) is multiplied by a weighting function and integrated over the whole domain:�
O

wT�U;t � Fi;i ÿ Fd
i;i�dO � 0: �44�

Integration by parts is used only on the diffusive ¯ux term Fd
i;i in order to get a formulation that

helps to impose the boundary conditions:�
O

wTFd
i;idO �

�
O
�wTFd

i �;idOÿ
�
O

wT
;iF

d
i dO �45a�

�
�
Gh

wTFd
i nidG�

�
Gg

wT ~hdGÿ
�
O

wT
;iF

d
i dO: �45b�

The Galerkin form of (43) looks as follows:�
O

wTU;tdO�
�
O

wTFi;idO�
�
O

wT
;iF

d
i dO �

�
Gh

wTFd
i nidG�

�
G

g wT ~hdG: �46�

With the linearization of the ¯ux terms, equation (46) can be written in the form�
O

wTU;tdO�
�
O

wTAiU;idO�
�
O

wT
;iKijU;jdO �

�
Gh

wTFd
i nidG�

�
Gg

wT ~hdG: �47�

Since the shape function of the RKPM does not satisfy the Kronecker delta condition

NI �xJ � 6� dIJ ; �48�
we need the extra condition �

Gg

d ~h�Uÿ g�dG � 0: �49�

Remark. The essential boundary term
�
Gg

wT ~hdG brings about the distinct difference between the

RKPM and classical ®nite element methods, which generally do not include this term in the

variational formulations.

Streamline upwind operator

The perturbation used for the Navier±Stokes equations is essentially the same as for the Euler

equations, but the design of tk is more complicated since it has to take the viscous term into account.

A general design for tk is shown in Reference 23.

The terms U;t � Fi;i of (43) are multiplied by p, giving�
O
�Tkw;k�T�U;t � Fi;i�dO � 0: �50�
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Using Fi;i � AiU;i gives �
O
�Tkw;k�T�U;t � AiU;i�dO � 0: �51�

SUPG Form

Now all terms are collected and the variational form can be written as�
O

wTU;tdO�
�
O

wTAiU;idO�
�
O

wT
;iKijU;jdO�

�
O

wT
;kTT

k U;tdO�
�
O

wT
;kTT

k AiU;idO

�
�
Gh

wTFd
i nidG�

�
Gg

wT ~hdG: �52�

4. DISCRETIZATION

4.1. Euler equations

The variational form (42) is discretized via the nodal distribution in the domain.�
O
�wh�TUh

;tdO�
�
O
�wh�TAiU

h
;idO�

�
O
�wh

;k�TTT
k Uh

;tdO�
�
O
�wh

;k�TTT
k AiU

h
;idO � 0: �53�

The discrete trial and weighting functions can be written in terms of shape functions and nodal

values:

wh � PNNP

I�1

NI wI ; wh
;i �

PNNP

I�1

NI ;iwI ;

Uh � PNNP

J�1

NJ UJ ; Uh
;i �

PNNP

J�1

NJ ;iUJ ; Uh
;t �

PNNP

J�1

NJ
_UJ :

�54�

With the de®nitions (54), equation (53) can be written in terms of discrete vector values at the

nodes:

PNNP

I�1

PNNP

J�1

��
O

wT
I NI NJ

_UJ dO�
�
O

wT
I NI AiNJ ;iUJ dO

�
�
O

wT
I NI ;kTT

k NJ
_UJ dO�

�
O

wT
I NI ;kTT

k AiNJ ;iUJ dO
�
� 0: �55�

The nodal vectors have no in¯uence on the integration and can therefore be taken out of the

integrals. The vector wI is the same for all integrals and can be taken out of the inner summation:

PNNP

I�1

wT
I

PNNP

J�1

��
O

NI NJ dO _UJ �
�
O

NI AiNJ ;idOUJ �
�
O

NI ;kTT
k NJ dO _UJ

�
�
O

NI ;kTT
k AiNJ ;idOUJ

�
� 0: �56�
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The integrals that are multiplied by _UJ can be summed up to build the mass matrices MIJ and the

integrals that belong to UJ build the convection matrices CIJ :

MIJ �
�
O
�NI I� NI ;kTT

k �NJ dO �mass matrix�; �57a�

CIJ �
�
O
�NI I� NI ;kTT

k �AiNJ ;idO �convection matrix�: �57b�

Thus equation (56) can be simpli®ed and written in matrix form as

PNNP

I�1

wT
I

PNNP

J�1

�MIJ
_UJ � CIJ UJ � � 0: �58�

Because the nodal vectors wI are arbitrary variations of the solution, they and the outer summation

are dropped and the system of equations that needs to be solved can be obtained as

PNNP

J�1

�MIJ
_UJ � CIJ UJ � � 0: �59�

4.2. Navier±Stokes Equations

The same steps need to be done for the weak form of the Navier±Stokes equations. The same

function sets and shape functions as in Section 4.1 are used. The discrete form of (52) is�
O
�wh�TUh

;tdO�
�
O
�wh�TAiU

h
;idO�

�
O
�wh

;i�TKijU
h
;jdO�

�
O
�wh

;k�TTT
k Uh

;tdO�
�
O
�wh

;k�TTT
k AiU

h
;idO

�
�
Gh

�wh�TFd
i nidG�

�
Gg

wT ~hdG �60�

and �
Gg

d ~h�Uÿ g�dG � 0: �61�

Here we employ the interpolation of the traction function on the essential boundary condition as

~hh �Png

K

NK
~hK and d ~hh �Png

K

NKd ~hK : �62�

Substituting the shape functions into (60) yields

PNNP

I�1

PNNP

J�1

�
O

wT
I NI NJ

_UJ dO�
�
O

wT
I NI AiNJ ;iUJ dO�

�
O

wT
I NI ;iKijNJ ;jUJ dO

��
�
�
O

wT
I NI ;kTT

k NJ
_UJ dO�

�
O

wT
I NI ;kTT

k AiNJ ;iUJ dO
�
ÿ
�
Gh

wT
I NI F

d
i nidG

ÿ
�
Gg

wT
I NI NK

~hKdG
�
� 0: �63�
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Again the vectors wI ;UJ and _UJ are taken out of the integrals and the terms belonging to _UJ and

UJ are collected:

PNNP

I�1

wT
I

PNNP

J�1

�
O
�NI I� NI ;kTT

k �NJ dO _UJ �
�
O

NI ;iKijNJ ;jdOUJ

��
�
�
O
�NI I� NI ;kTT

k �AiNJ ;idOUJ

�
ÿ
�
Gh

NI F
d
i nidGÿ

�
Gg

wT
I NI NK

~hKdG
�
� 0: �64�

The following matrices are de®ned to simplify the notation. This time there are the additional

diffusion matrices DIJ and the force vector FI resulting from the natural boundary conditions.

MIJ �
�
O
�N1I� TkNI ;k�TNJ dO �mass matrix�; �65a�

CIJ �
�
O
�NI I� TkNI ;k�TAiNJ ;idO �convection matrix�; �65b�

DIJ �
�
O

NI ;iKijNJ ;jdO �diffusive matrix�; �65c�

FI �
�
Gh

NI F
d
i nidG �traction boundary�; �65d�

~MIJ �
�
Gg

NI NKdG: �65e�

With the de®nitions (65) the variational form can be written as

PNNP

I�1

wT
I

PNNP

J�1

�MIJ
_UJ � �CIJ � DIJ �UJ � ÿ FI ÿ ~MIJ

~hJ

� �
� 0: �66�

Because the vectors wI are arbitrary, it necessarily follows that

PNNP

J�1

�MIJ
_UJ � �CIJ � DIJ �UJ � � FI � ~MIJ

~hJ : �67�

From the essential boundary condition we also have the extra matrix equation

~MKI UI � GK : �68�

Remark. In computation, equations (67) and (68) are solved in a coupled manner in order to satisfy

the enforced essential and natural boundary conditions simultaneously.

5. ADAPTIVE REFINEMENT

In order to get suf®ciently accurate numerical solutions with a minimum of memory and

computational time, a grid as coarse as possible is needed. A high particle density is usually needed

only in a few small regions of the domain. Therefore the programme needs an algorithm that is

capable of detecting these areas and also a strategy to insert particles to capture the response that

could not be resolved by the original particle distribution.
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5.1. Multiresolution analysis

To understand the ability of the RKPM to be used for multiresolution analysis, it is necessary to

look at its behaviour in the frequency or Fourier domain. The key to this ability is the dilation

parameter a of the window function fa�x; xÿ y�.
The RKPM can be viewed as a modi®ed convolution formulae that can be applied in ®nite domains

for arbitrary discretizations. The kernel function acts like a lowpass ®lter for the solution in this

system. By changing the dilation parameter a, it is possible to construct a series of lowpass ®lters that

provide different frequency parts of the solution. Subtracting two low-frequency solution parts that

are obtained for two different dilations a, e.g. a and 2a, we get the high-frequency part, which is

simply the difference between these two scales.

This high-frequency part contains that part of the solution that is close to the resolution limit of the

current particle distribution and therefore indicates the areas in the domain that need to be re®ned.

Another advantage is that aliasing shows up in the high-scale part of the solution. Thus, by re®ning

the distribution in these areas, the amount of aliasing is decreased.

The window function with a dilation parameter looks as follows:

fa�xÿ xj� �
1

aDxj

f
xÿ xj

aDxj

 !
: �69�

It can easily be seen that by changing a, the window function changes its shape. The correction

function is applied to the window function and we get the modi®ed window �fa. Then RKPM is

uRa �x� � Pau�x� � PNNP

j�1

u�xj� �fa�x; xÿ xj�Dxj; �70�

where �fa�x; xÿ xj� is the kernel function

�fa�x; xÿ xj� � Ca�x; xÿ xj�fa�xÿ xj� �71�
and Pa can be considered as a projection operator for the scale a. With the previously mentioned

change of dilation we can obtain the following relation for the projections on different scales:

Pau�x� � P2au�x� � P4au�x� � � � � � lim
n!1P2nau�x� � f;g: �72�

A wavelet function can be de®ned by

�c2a�x; xÿ xj� � �fa�x; xÿ xj� ÿ �f2a�x; xÿ xj�: �73�
Figures 1 and 2 show this de®nition for a cubic spline in the space and frequency domains

respectively.

Figure 1. De®nition of wavelet space domain
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This de®nition of a wavelet is not through a construction according to certain desired properties

like the Daubechies27 wavelets, but they are based on the same idea of representing the solution at

different scales with more or less detailed information. A theorem showing that the reconstruction of

the total solution with this de®nition is accurate enough for problems of engineering interest can be

found in Reference 28.

With this wavelet the complementary projection operator Q2a is de®ned to be

Q2au�x� � PNNP

j�1

u�xj� �c2a�x; xÿ xj�Dxj; �74�

so that the projected solution Pau�x� at the scale a can be represented by the sum of its low-scale and

complementary high-scale projections:

Pau�x� � P2au�x� � Q2au�x�: �75�
The solutions P2au�x� at the scale 2a could also be decomposed into its components P4au�x� and

Q4au�x� and so on. This framework provides the necessary means to decompose the solution into as

many scales as necessary.

Particles with high values of the reconstructed high-scale solution are marked as high-gradient

nodes for the adaptive algorithm.

5.2. The physical interpretation of multiresolution analysis and its application to hp-like adaptivity

As a simple illustration, the two-level decomposition in 2D, speci®ed by the product of the one-

dimensional window functions in directions x and y, is given as

f0�x; y� � f2�x�f2�y� � f2�x�c2�y� � c2�x�f2�y� � c2�x�c2�y�; �76�
where f0�x; y� � f0�x�f0�y�;f0�x� � f2�x� � c2�x� and f0�y� � f2�y� � c2�y�. In the Fourier

domain the 26 2 decomposition (via the product rule) is given as

f̂0�x; Z� � f̂0�x�f̂0�Z� � �f̂2�x� � ĉ2�x���f̂2�Z� � ĉ2�Z��
� f̂2�x�f̂2�Z� � f̂2�x�ĉ2�Z� � ĉ2�x�f̂2�Z� � ĉ2�x�ĉ2�Z�: �77�

The frequency (or wave number) spectra of the four resulting windows are depicted on the left-

hand side of Figure 3. The 26 2 decomposition of the multiple-scale RKPM solution of the ¯ow past

a biconvex aerofoil, described in Section 6.1, is depicted on the right-hand side of Figure 3. As can be

seen in the ®gure, the low-scale (scaling function) component f2�x�f2�y� ®lters out the oscillation;

therefore it gives a very smooth solution around the shock front. The products of a scaling function

and a wavelet, f2�x�c2�y� and c2�x�f2�y�, show a mixture of high-wave-number response and

Figure 2. De®nition of wavelet in frequency domain
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Figure 3. 26 2 decomposition of SUPG=RKPM
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aliasing. However, these medium scales display mostly the high-wave-number approximation of the

shock front, whereas the high-scale component (product of wavelets) c2�x�c2�y� displays mostly the

aliasing wave number that cannot be resolved with the current resolution, which is a typical example

of the Gibbs phenomenon. Nevertheless, the high wavelet component c2�x�c2�y� picks up the

location of the high-gradient region. We are currently investigating the optimal level of multiple-

scale decomposition in de®ning adaptivity.

It is also clearly illustrated in the wavelet component c2�x�c2�y� that the magnitude of the aliasing

solution and the width of the shock are much smaller. This example shows that the integral window

transform process (i.e. multiresolution analysis) can zoom in to pick up the high gradient of the

response and zoom out if no magni®cation of the response is necessary. The zoom-in and zoom-out

capability of the multiple-scale reproducing kernel method shows great promise in meshless

unstructured multigrid or hp-like adaptivity. Moreover, the physical interpretation of the computed

results can further be synthesized, since each banded solution is governed by the frequency (wave

number) band content of the corresponding Fourier transform. In Section 6.1 we shall employ the

wavelet solution c2�x�c2�y� as an error indicator. An h-adaptivity algorithm is also developed. The

theoretical development of wavelet solution and edge detection is given in Reference 15.

Figure 4. Node patterns
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5.3. h-Adaptivity by particle method

After the high-gradient regions (i.e. wavelet solution c2�x�c2�y�� have been found, a strategy is

necessary to systematically insert new nodes. In this example, only two basic patterns are used to

build the various combinations that are needed to cover all cases.

The method employed here uses cells to keep track of what happens between four neighbouring

particles by storing their connectivities. The algorithm checks every cell to see whether it has more

than one high-gradient node. If this is the case, the cell gets an additional middle node. Then the

algorithm checks all edges to see whether they have two high-gradient nodes. In this case a new node

is inserted in the middle of the corresponding edge. The node patterns and algorithms are shown in

Figures 4 and 5 respectively.

After all necessary new nodes have been inserted, the odd collocations are destroyed and four new

cells with the appropriate collocations are generated. Because the area within single cells has changed

for certain cells, the new weighting for each cell and node is computed and the corrected dilation

parameters are set for all nodes.

This algorithm is only one of many possibilities that can be chosen. The advantage here is the easy

use and fast re®nement, because extensive computations are not necessary to ®nd the areas that need

additional nodes. A problem is the generation of cells with less than four nodes, causing dif®culties

for the subsequent re®nement. This is illustrated in Figure 6.

Right now this problem is avoided by not re®ning cells that have less than four nodes. Because

cells with only two or three nodes are generated only if the parent cell did not have four high-gradient

points, these cells do not contain the highest gradients and therefore not re®ning them does not cause

a signi®cant error. The results in the example of the thin biconvex aerofoil show that this algorithm

works well enough to improve the solution considerably compared with the solution that can be

obtained with the original node distribution.

Figure 5. Algorithm for re®nement
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6. NUMERICAL EXAMPLES

6.1. Biconvex Aerofoil

6.1.1. Geometry and Boundary Conditions. The problem considered here is that of a thin biconvex

aerofoil in a uniform ¯ow ®eld.25,29 Two symmetric parabolic arcs prescribe the geometry of the thin

aerofoil. Figure 7 shows the con®guration; b is the ratio of the maximum aerofoil thickness to the

cord length. The subscript `?' refers to freestream values.

Because the problem is symmetric, only the upper half of the domain, x2 5 0, is considered. The

parabolic arc bounding the upper half of the aerofoil is described by

x2 � 1
2

b�1ÿ �2x1�2�: �78�

The governing equations for this problem are the Euler equations and the freestream values are

assumed to be r1 � 1�0; u21 � 0�0 and e1 � 1�0.

Figure 7. Thin aerofoil

Figure 6. Generation of one-node cells
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The value of u11 depends on the freestream Mach number M1 according to the formula

u11 � �
M 21g�gÿ 1�e1

1
2

M 21g�gÿ 1� � 1

 !s
: �79�

Along the symmetry axis but not on the aerofoil the following condition is imposed:

u2 � 0; x2 � 0; jx1j > 0:5: �80�
On the surface of the aerofoil the velocity vector must be tangential to the surface. This restriction

can be expressed by

u2=u1 � dx2=dx1: �81�

Figure 8. First re®nement

1408 W. K. LIU ET AL.

INT. J. NUMER. METH. FLUIDS, VOL 24: 1391±1415 (1997) # 1997 by John Wiley & Sons, Ltd.



Because of the assumption that the aerofoil is thin and therefore perturbs the uniform ¯ow ®eld

only slightly, the value of u1 is approximated by its freestream value u11. Equation (81) then

becomes

u2=u11 � dx2=dx1 �82�
and the boundary condition on the surface of the aerofoil is prescribed by

u2 � ÿ4bx1u11; jx1j4 0�5: �83�
On the in¯ow boundary the values r � r1; u1 � u11; u2 � u21 and e � e1 are prescribed; at the

upper boundary, only u2 � u21 is prescribed; at the out¯ow boundary no values are prescribed.

Figure 9. Second re®nement
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6.1.2. Results. The solution in which we are interested is the pressure distribution over the domain.

It is important to ®nd the pressure shock fronts and re®ne the discretization around them so that

numerical noise can be avoided as much as possible. Figure 8 shows the procedure starting from the

original particle distribution. The solution for t � 8�0 is decomposed into its high- and low-scale

parts. Then nodes are inserted according to the high-scale solution part.

With this new discretization the solution is computed again (see Figure 9). It is easy to see the

improvement compared with the previous solution. The decomposition shows that the high-scale

solution area became smaller. The information of the high-scale solution is used for another

re®nement of the particle distribution.

6.2. 2D Advection±Diffusion Equation

The 2D steady state advection±diffusion equation is solved by the RKPM. Adaptivity based on

multiresolution analysis is also conducted.

The governing equation of the advection±diffusion problem is

nH2fÿ u ? Hf � 0: �84�
The problem description is given in Figure 10, where the computation domain is de®ned. The ¯ow

is unidirectional, constant �kuk � 1� and skew to the particle distribution. The diffusivity n is 1076.

As shown in Figure 10, the in¯ow boundary condition is discontinuous and the natural boundary

condition is applied to the out¯ow boundary. In implementation of the computation a cubic spline is

used as the window function and for simplicity, the dilation parameter a is chosen to be unity in all

cases. Four kinds of uniform particle distributions, 116 11, 216 21, 416 41 and 616 61, are

utilized. In addition, four levels of adaptivity, starting from the base grid 116 11, are performed.

The numerical results of the four uniform spacing grids (121, 441, 1681 and 3721 nodes) are

shown in Figure 11. As we could expect, more nodes are needed in the discontinuous region than in

the smooth region. However, a uniform particle distribution cannot meet this requirement, because

re®nements are made over the entire region, in which most of the inserted nodes are useless. The

algorithm of adaptive re®nement is depicted in Figure 12. According to the wavelet solution, high-

gradient points are detected, which are labelled by a different symbol in the ®gure. New nodes are

simply added into this region to get higher resolution. Because of the meshless property, adaptivity is

easy to implement even for large-motion ¯ow problems, which often pose dif®culties when the

translational ®nite element method is used. As illustrated in Figure 13, the results of the adaptive

Figure 10. Problem statement: advection skew to mesh
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Figure 11. Uniform re®nements (116 11, 216 21, 416 41 and 616 61)
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Figure 12. Adaptivity algorithm by multiresolutin RKPM
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Figure 13. Adaptive re®nements (238, 474, 1013 and 2179 particles)
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re®nements, which only add nodes to the high-gradient region, give a more accurate prediction of the

shock front with fewer nodes.

6.3. Large deformation by Lagrangian RKPM

In this subsection an example of large deformation of ¯uids using the Lagrangian RKPM is

illustrated. An axisymmetric formulation is employed for the simulation of bubble explosion near the

free surface. A uniform internal pressure is applied outwards to the bubble. Figure 14(a) shows the

domain of the problem, which is [0�0, 5�0]6 [ÿ5�0, 1�0] (m). The total number of particles is 2655.

Explicit time integration with a time step of 2�06 1077 s is used and no numerical damping is

added. Close-up views of selected steps are given in Figures 14(b)±(d). More examples of large

deformation with different materials will be presented in a future paper.

7. CONCLUSIONS

It is demonstrated that a major advantage of the multiresolution reproducing kernel particle method

(RKPM) over traditional adaptive methods lies in the higher accuracy and the built-in property of

constructing hp-like adaptive re®nement without a mesh. In the procedure of adaptive re®nement,

nodes are simply inserted into selected regions of high gradient, which can be obtained from the

wavelet solution part of the total solution. The performances of the proposed algorithms are studied

by solving the Euler equation, the 2D advection±diffusion equation and a large-deformation problem.

Applications of the RKPM to more complicated problems in computational ¯uid dynamics are under

way.
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Figure 14. Bubble evolution
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